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Abstract
Management of chronic diseases such as dia-
betes mellitus requires adaptation of treatment
regimes based on patient characteristics and re-
sponse. There is no single treatment that fits all pa-
tients in all contexts; moreover, the set of admissi-
ble treatments usually varies over the course of the
disease. In this paper, we address the problem of
optimizing treatment regimes under time-varying
constraints by using volatile contextual Gaussian
process bandits. In particular, we propose a vari-
ant of GP-UCB with volatile arms, which takes
into account the patient’s context together with the
set of admissible treatments when recommending
new treatments. Our Bayesian approach is able
to provide treatment recommendations to the pa-
tients along with confidence bounds which can
be used for risk assessment. We use our algo-
rithm to recommend bolus insulin doses for type
1 diabetes mellitus patients. Simulation studies
show that our algorithm compares favorably with
traditional blood glucose regulation methods.

1. Introduction
Treatment of chronic diseases requires long term commit-
ment and adaptation to ever evolving conditions. As there
is no one-size-fits-all approach, treatments must be adapted
based on changing patient characteristics. Within this con-
text, there has been a surge of interest in using machine
learning techniques for identifying optimal personalized
treatment regimes.

Since management of chronic diseases requires repeatedly
making decisions, more data about the patient’s response is
accumulated over time. Moreover, data collected from the
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patient depends on the course of the treatment. Therefore,
supervised learning methods—which require offline training
data—are unable to produce accurate recommendations in
the long run. As the patient characteristics evolve over time,
treatment must be adjusted to maximize the benefit while
minimizing the risks. This requires an intricate balance
between exploration and exploitation. The best treatment
under the current context must be identified with sequential
experimentation while ensuring safety and efficiency at the
same time.

In this work, we model optimization of dynamic treatment
regimes as a volatile contextual Gaussian process (GP) ban-
dit. The predictive power and non-parametric flexibility
of GPs allow us to accurately model the relationship be-
tween treatment and response under different patient con-
texts. Moreover, sequential experimentation via upper con-
fidence bounds constructed using the posterior mean and
covariance functions of the GP allows us perform safe ex-
perimentation over a set of admissible treatments calculated
based on the current context. Our framework allows flexibil-
ity in forming the set of admissible treatments, and enables
safe experimentation among a set of treatments identified by
clinical guidelines or baseline interpretable formula-based
systems. In particular, we focus on using our framework for
personalized bolus insulin dose recommendation for type 1
diabetes mellitus (T1DM) patients.

Modeling bolus insulin recommendation as a volatile
contextual bandit. T1DM is a chronic autoimmune dis-
ease characterized by insulin deficiency due to pancreatic β
cell loss. Lack of insulin regulation in diabetic patients can
have serious adverse effects due to hypoglycemia and hyper-
glycemia, i.e., low and very high blood glucose (BG) levels,
respectively, which might result in immediate hospitaliza-
tion or even death, or long term damage to various organs
at risk unless effectively treated. Therefore, T1DM patients
must regulate their BG by regularly administering bolus
insulin before the meals in order to avoid hyperglycemia
and its adverse affects. This is a complicated process, since
the optimal insulin dose depends on a variety of exogenous
and endogenous contexts such as time of the day, pre-meal
BG level, carbohydrate content of the meal, basal insulin
levels, etc.



Our model treats each meal event as a decision epoch. For
each context, it recommends a bolus insulin dose in order
to achieve optimal BG regulation in the long run. In order
to prevent short-term and long-term adverse effects due
to possible hypoglycemia and hyperglycemia events, we
employ safety constraints to identify the set of admissible
treatments for each context. This induces volatility over
the set of treatments, hence some treatments may not be
explored at certain times. In particular, we consider safe
experimentation around the dose suggested by a standard
formula-based bolus insulin calculator in our simulations.
We want to keep the BG as close as possible to the target
value (e.g., 112.5 mg/dL) after each meal event by learning
the best dose for each context. Obviously, this requires us
to explore different doses. However, exploration needs to
be safe by ensuring that recommended doses do not lead
to hypoglycemia or hyperglycemia events, which translates
to keeping the patients’ postprandial BG between 70-180
mg/dL. In the end, we demonstrate that safe experimentation
around a formula-based interpretable benchmark provides
improved BG regulation.

Our contribution and comparison with related works.
Our work builds on the formalism of contextual bandits and
GP bandits. It allows us to recommend doses adapted to
both patient and meal event characteristics. Prior works on
contextual bandits such as (Lu et al., 2010) and (Langford
& Zhang, 2007) mostly consider the problem within the
context of online recommender systems. They propose non-
Bayesian approaches to minimize the regret, which is a long-
term performance metric. (Krause & Ong, 2011) proposes
contextual GP bandits, and provides bounds on the regret
that depend on information gain. GP bandit models have
recently gained attention due to their trustable nature as the
posterior covariance can fully capture the uncertainty in rec-
ommendations. Likewise, their performance can be theoreti-
cally proven via a rigorous regret analysis. These aspects are
particularly important in healthcare applications, in which
the prevention of unwanted consequences during the course
of treatment is of the highest priority. We consider contex-
tual GP bandits with dynamic (possibly context-dependent)
arm availability and base our analysis on a tighter form
of information gain, which is adapted to the sequence of
observed contexts.

Our contributions are two fold. First, we adapt contextual
Gaussian Process Upper Confidence Bound (CGP-UCB)
algorithm given in (Krause & Ong, 2011) to the volatile
arm setup, and call this adaptation VCGP-UCB. For any
admissible sequence of treatments, we show that the regret

of VCGP-UCB is Õp
b

TγvolT q, where γvolT represents the
volatility-adapted maximum information gain. This term
is always less than or equal to the unrestricted maximum
information gain γT in (Krause & Ong, 2011). Therefore,

for typical covariance functions such as squared-exponential
or Matern, regret growth is sublinear in time. In terms of
diabetes treatment, this implies that the average number of
decision-epochs in which a suboptimal treatment is sug-
gested converges to zero. To the best of our knowledge,
this paper is the first to apply Bayesian bandit strategies for
optimal BG control.

Another related strand of literature makes use of Markov
decision processes (MDPs) for clinical decision-making
(Bennett & Hauser, 2013). MDPs are especially suitable
for problems in which past and present outcomes in the
course of treatment are highly correlated. Within the con-
text of diabetes management, using MDPs is more suitable
for insulin-pump therapy with continuous glucose moni-
toring (CGM), where insulin is administered continuously
over time. On the other hand, in this paper, we focus on
diabetes treatment with multiple daily injections (e.g., 3-4
times a day). Since bolus insulin is rapid acting, its effect
mostly wears out before the next meal. Moreover, our con-
text includes fasting BG, which efficiently captures residual
effect of the previous insulin dose. Thus, conditioned on the
context, outcome of each dose can be regarded as i.i.d., and
hence, contextual bandits are a better fit for our problem.
Indeed, bandit algorithms can be applied in other dynamic
treatment assignment and drug dosage problems, where
the effect of treatment significantly decays before the next
decision-epoch.

Second half of our contribution is focused on automatic BG
control in diabetes mellitus patients. In the literature, there
are mainly three categories of models for BG regulation:
standard formula-based bolus insulin calculators (Schmidt
& Nørgaard, 2014), closed-loop control systems (aka arti-
ficial pancreas) (Cobelli et al., 2011) and models based on
reinforcement learning (Tejedor et al., 2020). The block
diagram of our model, which is a closed-loop system that
uses VCGP-UCB as the controller, is given in Figure 1.
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Figure 1. Our system model. We use volatile CGP-UCB to perform
safe experimentation around the recommendation produced by a
standard formula-based bolus calculator.



Table 1. Comparison with the related bandit models.
Properties This work

GP-UCB
(Srinivas et al., 2012)

CGP-UCB
(Krause & Ong, 2011)

SAFE-OPT
(Sui et al., 2015)

STAGE-OPT
(Sui et al., 2018)

Safe-LUCB
(Amani et al., 2019)

SGP-UCB
(Amani et al., 2020)

Contextual Yes No Yes No No No No
GP prior Yes Yes Yes Yes Yes No Yes

Arm volatility Exogenous: No No Endogenous; Endogenous; Endogenous; Endogenous;
Arm set Finite Can be infinite Can be infinite Finite Can be infinite Can be infinite Finite

Context set Can be infinite - Can be infinite - - - -
Information gain term

in the regret bound
Volatility-adapted

maximum Maximum Maximum - Maximum - Maximum

:Volatility induced by an exogenous process (e.g., context arrivals). ;Volatility induced by safety constraints.

Table 2. Comparison with the diabetes treatment models.

Properties This work
Standard

bolus calculator
(Schmidt & Nørgaard, 2014)

Adaptive
bolus calculator

(Herrero et al., 2017)

Bio-inspired
artificial pancreas

(Reddy et al., 2014)

Actor-Critic
(Daskalaki et al., 2013)

Model GP bandits Formula-based CBR & R2R:
Bio-modeling

via DEs; Actor-Critic RL

Adaptiveness
(to patient response) High Limited High Limited High

Theoretical performance
(regret) guarantees Yes No No No No

Safe exploration Yes No No No No
:CBR: Case-Based Reasoning, R2R: Run-To-Run control. ;DE: Differential Equation.

Standard formula-based bolus insulin calculators are widely
used to calculate pre-meal bolus insulin dose thanks to their
simplicity and interpretability (Walsh et al., 2011). An
example is

Bolus insulin “
ˆ

CHO
ICR

`
GM ´ GT

CF

˙`

(1)

where paq` “ maxta, 0u, CHO (g) the estimated
amount of carbohydrate intake, ICR (g/U) is the insulin-to-
carbohydrate-ratio, GM (mg/dL) is the measured meal time
BG, GT (mg/dL) is the target BG and CF (mg/dL/U) is the
insulin correction factor (Schmidt & Nørgaard, 2014). Re-
cently, more sophisticated versions of the standard formula-
based bolus calculator are developed such as advanced (Her-
rero et al., 2014) and adaptive (Herrero et al., 2017) calcu-
lators. While standard bolus insulin calculators serve as a
transparent and interpretable baseline, they lack sophisti-
cation and ignore other contextual variables which might
have an effect on post-meal BG levels (Schmidt & Nørgaard,
2014). Thus, precise regulation of BG control requires care-
fully adjusting bolus doses around a safe baseline.

A different line of research exists under the name artificial
pancreas. It refers to the closed-loop control of BG in di-
abetes, which is usually achieved by subcutaneous CGM
and insulin infusion. Within this context, control-theoretic
approaches such as proportional-integral-derivative (PID)
(Sherr et al., 2013) and model predictive control (MPC) (Ko-
vatchev et al., 2013) have been widely investigated. In recent
years, reinforcement learning (RL) based control models
are also developed (Tejedor et al., 2020). Luckett et al.
(2020) consider V-learning for estimating dynamic treat-
ment regimes using a parametric class of policies, where

exploration can be achieved using ε-greedy style randomiza-
tion. They use V-learning to estimate an optimal treatment
policy for T1DM patients. However, most of these methods
are designed for use with insulin-pump therapy and CGM—
tools which may not be readily available for most diabetic
patients. In contrast, our algorithm provides recommenda-
tions tailored for traditional BG regulation, which can be
performed by using finger-stick BG meters and multiple
daily bolus insulin injections, and does not require access to
expensive medical equipment. Compared to our work, most
of other RL-based solutions are not interpretable due to
their black-box nature, and they do not come with rigorous
performance analysis.

We provide a detailed comparison of our work with related
works in bandits and BG control for diabetes in Tables 1
and 2.

2. Problem Formulation
Let S denote the set of all treatments (finite), Z denote the
set of all patient contexts (can be infinite) and T denote
the number of iterations. For t P rT s :“ t1, . . . , T u, let zt
be the patient context and St Ď S be the set of admissible
treatments in round t. Our setup is general in the sense
that it allows St to be a function of zt. Since only a subset
of treatments are available in each round, this setup corre-
sponds to a bandit problem with volatile arms. We consider
the problem of sequentially optimizing effectiveness of the
given treatments, which is characterized by an unknown
reward function f : S ˆ Z Ñ R. Within the context of
bolus insulin recommendation, reward measures closeness
of postprandial BG to target BG (see Section 5 for details).



At the beginning of reach round t, the learner receives a
patient context zt P Z, chooses a treatment st P St, and
then, observes a noisy reward yt “ fpst, ztq ` εt, where
εt denotes the zero mean Gaussian noise with σ2 variance,
independent across the rounds. The objective is to maximize
the cumulative reward

řT
t“1 fpst, ztq without knowing f

beforehand. The optimal treatment in round t is denoted by
s˚t “ argmaxsPSt

fps, ztq. Suboptimality of the treatment
in round t is given as rt “ fps˚t , ztq ´ fpst, ztq, which is
also called the instantaneous regret. The cumulative regret
is the sum of instantaneous regrets, i.e., RT “

řT
t“1 rt. It

is well known that maximizing the cumulative reward is
equivalent to minimizing the cumulative regret.

LetX “ SˆZ denote the set of treatment-context pairs. We
assume that f is sampled from a known GP pµ, kq which
is fully characterized by its mean function µ : X Ñ R,
µpxq “ Erfpxqs and covariance (kernel) function k :
XˆX Ñ R, kpx, x1q “ Erpfpxq´µpxqqpfpx1q´µpx1qqqs.
We assume that µ ” 0 and that the variance is bounded, i.e.,
kpx, xq ď 1 for all x P X . Given an observation history
At “ tx1, . . . , xtu, where xt “ pst, ztq, the posterior mean
and variance of the GP at point x can be calculated as fol-
lows (Rasmussen, 2003):

µtpxq “ ktpxq
T pKt ` σ

2Iq´1yt,

ktpx, x
1q “ kpx, x1q ´ ktpxq

T pKt ` σ
2Iq´1ktpx

1q,

σ2
t pxq “ ktpx, xq,

where ktpxq “ rkpx1, xq, . . . , kpxt, xqs
T , Kt is the kernel

matrix rkpx, x1qsx,x1PAt
and yt “ ry1, . . . , yts

T .

3. Volatile CGP-UCB Algorithm
As our learning algorithm, we use contextual Gaussian Pro-
cess (CGP) algorithm in (Krause & Ong, 2011) adapted to
the volatile setting. Its pseudocode is given in Algorithm 1.
Basically, at round t, VCGP-UCB selects treatment

st “ argmax
sPSt

µt´1ps, ztq ` β
1{2
t σt´1ps, ztq,

where βt is a non-decreasing function of t (which will be
specified later). The selected treatment is the one with
the highest upper confidence bound (UCB) index among
all admissible treatments in round t. Within the context
of bolus insulin dosage for diabetes treatment St is set by
defining a safe experimentation region around the treatment
suggested by a formula-based bolus calculator.

Postprandial BG predictions based on GPs: Treatment
recommendations can be accompanied by postprandial BG
predictions, by using another GP as a surrogate model for
postprandial BG surface g : S ˆ Z Ñ R. In this case,
each noisy postprandial BG measurement is represented
by gt “ gpst, ztq ` η̃t, where η̃t represents the zero mean

Gaussian measurement noise with known variance. The fol-
lowing remark explains how probabilities of hyperglycemia
and hypoglycemia events can be computed using the GP
posterior for g.

Remark 1. Given a treatment-context pair pst, ztq and
BG target range (glow, ghigh), probability of hyper-
glycemia and hypoglycemia events, P pgpst, ztq ă glowq
and P pgpst, ztq ą ghighq respectively, can be com-
puted from posterior distribution with mean µ̃t´1pst, ztq
and variance σ̃2

t´1pst, ztq at round t where gpst, ztq „
N pµ̃t´1pst, ztq, σ̃

2
t´1pst, ztqq. Suppose that X „ N p0, 1q

and FX denotes cumulative distribution function of ran-
dom variable X . Thus, P pgpst, ztq ă glowq “

FXp
glow´µ̃t´1pst,ztq

σ̃t´1pst,ztq
q and P pgpst, ztq ą ghighq “ 1 ´

FXp
ghigh´µ̃t´1pst,ztq

σ̃t´1pst,ztq
q.

Algorithm 1 VCGP-UCB algorithm
1: Input: Input space X; GP prior µ0 “ 0, σ0, k
2: for t = 1 to T do
3: Observe context zt, and the set of admissible treat-

ments St
4: Choose st = argmaxsPSt

µt´1ps, ztq `
?
βtσt´1ps, ztq

5: Observe yt = fpst, ztq ` εt
6: Update GP posterior to obtain µt and σt
7: end for

4. Theoretical Analysis
4.1. Main Regret Bound

Consider a fixed sequence of patient contexts zT “

rz1, . . . , zT s. Let Xt “ pzt, Stq and Let XT “ X1 ˆ

¨ ¨ ¨ ˆ XT represent the Cartesian product of all admissi-
ble treatment-context pairs up to round T . For a given
sequence of treatment-context pairs A, let yA denote the
|A|-dimensional vector whose ith element corresponds to
the reward observed for the ith treatment-context pair in A.
The quantity governing our regret bounds is the volatility-
adapted maximum information gain after T rounds (given
zT ), which is defined as

γvolT “ max
APXT

IpyA;fAq ,

where fA “ rfpxqsxPA and IpyA;fAq is the mutual in-
formation between f and reward observations at points in
A.

First, we state our main theorem. Its proof is built on the
proofs by (Srinivas et al., 2012) and (Krause & Ong, 2011).

Theorem 1. Fix δ P p0, 1q. When volatile CGP-UCB is
run with βt “ 2logp|S|t2π2{6δq, for an arbitrary fixed



sequence of contexts zT , we have

PrtRT ď
b

C1TβT γvolT @T ě 1u ě 1´ δ ,

where C1 “ 8{ logp1` σ´2q.

The above theorem provides an information-type regret
bound for volatile CGP-UCB. The maximum information
gain γvolT depends on both the context sequence and the set
of admissible treatments. This contrasts with the informa-
tion gain terms defined in (Srinivas et al., 2012) and (Krause
& Ong, 2011), which for our setting can be written as

γT “ max
APX̃T

IpyA;fAq ,

where X̃T “ ˆ
T
t“1X is the Cartesian product of T copies

of X “ SˆZ. It is obvious that γvolT ď γT , and in practice
γvolT might be much smaller than γT . The reason for this is
that we are constrained in each round to pick a treatment
from the set of admissible treatments St instead of S, and
we incur regret only when the selected treatment differs
from the best available treatment of that round. Therefore,
sublinear regret bounds in (Srinivas et al., 2012) and (Krause
& Ong, 2011) obtained for squared exponential and Matern
kernels also hold in our setting.

As a result, Theorem 1 shows that when such kernels are
used, time-averaged regret given as RT {T converges to
zero with high probability. In the context of BG regulation,
this implies that our algorithm’s insulin recommendations
converge to the optimal insulin recommendations over time.

4.2. Proof of Theorem 1

Lemma 1. (Lemma 5.1 in (Srinivas et al., 2012)) Fix
the sequence of contexts zT . Let δ P p0, 1q and βt “
2logp|S|πtδq, where

ř

tě1 π
´1
t “ 1, πt ą 0. Then, the

following event holds with probability at least 1´ δ.

|fps, ztq´µt´1ps, ztq| ď β
1{2
t σt´1ps, ztq @s P S,@t ě 1 .

Lemma 2. Fix t ě 1. If |fps, ztq ´ µt´1ps, ztq| ď

β
1{2
t σt´1ps, ztq for all s P St, then the instantaneous regret
rt is bounded by 2β

1{2
t σt´1pxtq.

Proof. Let s˚t P argmaxsPSt
fps, ztq be an optimal action.

By definition of st : µt´1pst, ztq ` β
1{2
t σt´1pst, ztq ě

µt´1ps
˚
t , ztq`β

1{2
t σt´1ps

˚
t , ztq ě fps˚t , ztq, where the last

inequality is due to Lemma 1. Therefore, rt “ fps˚t , ztq ´

fpst, ztq ď β
1{2
t σt´1pst, ztq ` µt´1pst, ztq ´ fpst, ztq ď

2β
1{2
t σt´1pst, ztq.

Lemma 3 (Lemma 5.3 in (Srinivas et al., 2012)). Given zT ,
the information gain for the points selected can be expressed

in terms of the predictive variances. If fT “ pfpxtqq P RT :

IpyT ;fT q “
1

2

T
ÿ

t“1

logp1` σ´2σ2
t´1pxtqq.

Lemma 4. Fix the sequence of contexts zT . Pick δ P p0, 1q
and let βt be defined as in Lemma 1.1. Then, the following
holds with probability at least 1´ δ:

RT ď
a

TβTC1IpyT ;fT q ď
b

TC1βT γvolT @T ě 1 ,

where C1 “ 8{ logp1` σ´2q.

Proof. The proof is similar to the proof of Lemma 5.4 in
(Srinivas et al., 2012). By Lemmas 1.1 and 1.2, we have
that

Prtr2t ď 4βtσ
2
t´1pxtq @t ě 1u ě 1´ δ .

Also note that

(i) βt is non-decreasing in t, and thus, βT ě βt for @T ě t.

(ii) Note that σ´2σ2
t´1pxtq ď σ´2kpxt, xtq ď σ´2, where

kpxt, xtq ď 1 due to assumption of bounded variance.
Let C2 “ σ´2{ logp1 ` σ´2q. Note that C2 ě 1 and

s2

logp1`s2q ď C2 for s2 P r0, σ´2s.

(iii) By cannons i, ii and Lemma 3 we bound rt.

T
ÿ

t“1

r2t ď
T
ÿ

t“1

4βTσ
2C2 logp1` σ

´2σ2
t´1pxtqq

“ 8βTσ
2C2

1

2

ÿ

tě1

logp1` σ´2σ2
t´1pxtqq

ď βTC1γ
vol
T .

Finally, by cannons i, ii and iii, we bound RT . Result
follows from Cauchy-Schwarz inequality.

R2
T “ p

T
ÿ

t“1

rtq
2 ď T

T
ÿ

t“1

r2t

ď TβTC1γ
vol
T .

Thus, RT ď
b

TβTC1γvolT .

5. Experiments
We perform in silico evaluation with UVa/PADOVA T1DM
2008 Simulator (Kovatchev et al., 2009), (Xie, 2018). The
glucose-insulin model was created to substitute certain pre-
clinical trials and approved by U.S. FDA in 2008 as a re-
liable framework for in silico trials and for closed-loop
hormone controller design, testing, and validation. We use
all 10 in-silico adult patients included in the simulator in
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Figure 2. Box plot of postprandial BG distributions of different methods.

our experiments. We use (GPy, 2012) to implement VCGP-
UCB. We compare our model against CGP-UCB (Krause
& Ong, 2011) with non-volatile arms and formula-based
bolus calculators (Walsh et al., 2011) with different amount
of miscalibration. We demonstrate that our algorithm can
successfully personalize well-accepted formula-based cal-
culator results with safe exploration. We highlight robust-
ness by introducing various miscalibrations to the standard
formula-based calculator.

As our evaluation metrics, we use glycemic outcome mea-
sures that are widely accepted by the diabetes manage-
ment community to evaluate glycemic control (Maahs et al.,
2016) and glycemic risk measures (Kovatchev et al., 2000).
Glycemic outcome metrics are mean BG, percentage time
in BG target range [70,180] mg/dL (%inT), percentage time
below target (i.e. hypoglycemia) (%ăT) and percentage
time above target (i.e. hyperglycemia) (%ąT). Glycemic
risk indices are low blood glycemic index (i.e. risk of hypo-
glycemia) (LBGI), high blood glycemic index (i.e. risk of
hyperglycemia) (HBGI) and risk index (RI=LBGI+HBGI).
LBGI is used to group subjects regarding to their long-term
risk for hypoglycemia. The risk categories are minimal, low,
moderate and high risk, with LBGI of below 1.1, 1.1-2.5,
2.5-5.0, and above 5.0, respectively (Kovatchev et al., 2003).

The BG measurement scale (20-600 mg/dL) is asymmetric.
Hypoglycemia range (below 70 mg/dL) is much narrower
than the hyperglycemia range (above 180 mg/dL). BG val-
ues are mapped to risk space where the minimum value of 0
is achieved at BG value of 112.5 mg/dL while its maximum
value of 100 is achieved at 20 mg/dL and 600 mg/dL. We
get risk value of 7.7 at the BG values of 70 and 180 mg/dL.
Given a set of postprandial BG measurements, HBGI and
LBGI are defined as the average hyperglycemia and hypo-
glycemia risk scores, respectively, where RI denotes overall
risk score and is equal to the sum of HBGI and LBGI. The

lower the risk values of LBGI and HBGI gets, the less the
risk of hypoglycemia and hyperglycemia becomes since the
postprandial BG gets closer to 112.5 mg/dL (Kovatchev
et al., 2003).
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Figure 3. Cumulative reward regrets of volatile CGP-UCB algo-
rithms. Error bars represent ˘ one standard deviation.

5.1. Setup

The context variables for our algorithms are the amount of
carbohydrate intake, fasting BG level, time between meal
and insulin intake, and time between meal and postprandial
BG measurement. We generate 30 different meal events
with different fasting BG values. Carbohydrate intake and
fasting BG values are uniformly sampled from ranges 20-
80 g and 70-180 mg/dL, respectively. Time between meal
and insulin intake is set to 0. Time between meal and post-
prandial BG measurement is set to 150 minutes. Bolus
insulin dose ranges from 0 to 30 units with 0.1 increments.
Min-max normalization is used for all contexts and arms by
mapping to unit interval.



Table 3. Glycemic results averaged over glycemic outcome of all ten in-silico adult patients. For postprandial BG, mean and ˘ one
standard deviation are reported.

Method BG (mg/dL) %inT %ăT %ąT RI LBGI HBGI
CGP-UCB 104.38˘50.90 0.65 0.23 0.11 9.42 7.08 2.34
Fine-tuned SimCalc 128.85˘10.55 1.00 0.00 0.00 0.37 0.03 0.34
SimCalc 152.05˘18.00 0.83 0.00 0.17 1.30 0.00 1.30
VCGP-UCB SimCalc 129.77˘23.32 0.94 0.00 0.06 1.36 0.24 1.12
HyperCalc 174.60˘30.33 0.60 0.00 0.40 2.54 0.00 2.54
VCGP-UCB HyperCalc 155.94˘25.05 0.79 0.00 0.21 1.55 0.00 1.55
HypoCalc 78.13˘18.06 0.58 0.42 0.00 4.38 4.33 0.05
VCGP-UCB HypoCalc 115.40˘25.12 0.92 0.08 0.00 3.59 3.26 0.34
VCGP-UCB SimCalc (˘ 40% exploration margin) 137.57˘17.89 0.91 0.00 0.09 1.01 0.07 0.94
VCGP-UCB SimCalc (˘ 80% exploration margin) 123.97˘29.57 0.88 0.06 0.06 1.79 0.51 1.28
VCGP-UCB SimCalc (ε̃5*) 130.73˘24.56 0.93 0.00 0.07 1.35 0.27 1.07
VCGP-UCB SimCalc (ε̃10*) 130.40˘25.70 0.89 0.02 0.09 1.50 0.36 1.14
VCGP-UCB SimCalc (ε̃20*) 131.22˘32.28 0.87 0.04 0.09 2.21 1.07 1.14
*ε̃s denotes zero mean Gaussian noise with s2 variance added on top of postprandial BG value returned by the simulator.
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Figure 4. Cumulative BG regrets of volatile CGP-UCB algorithms.
Error bars represent ˘ one standard deviation.

We use a composite ARD kernel function defined over joint
context-arm set for GP-based algorithms. The kernel con-
sists of additive combination of Matern 5/2 and linear co-
variance functions. Matern 5/2 length scales are set as 0.5
for carbohydrate intake, fasting BG level and bolus insulin,
and 5 for others. Variances are set as 1 for all kernels. Noise
variance is set to 1. βt is set to 4.

The algorithms have the BG target of 112.5 mg/dL, which
is regarded as the clinical center of the BG scale, i.e. the
BG value associated with zero risk index (Kovatchev et al.,
2003). In accordance with this, in order to evaluate perfor-
mance of bolus recommendations given contexts, we define
the following loss function based on resulting postprandial
BG, similar to (Keramati et al., 2020)

losspg̃q “

#

pg̃ ´ 6q2{5 g̃ ă 6

pg̃ ´ 6q2{10 g̃ ě 6
(2)

where g̃ “ g{18.75 is such that g̃ “ 6 corresponds to

g “ 112.5 mg/dL postprandial BG. Note that the BG mea-
surement scale is asymmetric since the hypoglycemia range
(below 70 mg/dL) is numerically much narrower than the
hyperglycemia range (above 180 mg/dL). Moreover, hypo-
glycemia is considered to be more risky than hyperglycemia.
This justifies choosing a higher loss for hypoglycemia. In
each round t, learning algorithms observe the context zt,
choose a bolus dose st, observe the postprandial BG mea-
surement gt, and receive reward yt “ ´losspg̃tq.

During the experiments, arm volatility is introduced through
safety constraints for the insulin dose. These constraints
are defined by taking formula-based bolus calculators (see
Eq. 1) as baseline models. Our first calculator uses ICR
and CF values of each patient that comes with the simulator,
which are not very well-tuned. We name this calculator
as SimCalc. We also provide results for a manually tuned
version of SimCalc named as Fine-tuned SimCalc. For this,
we scale down ICR and CF by a fixed amount in order to
prevent hypoglycemia or hyperglycemia as much as possi-
ble. In addition, we test against two types of miscalibrated
formula-based calculators that cause either a certain amount
of hypoglycemia or hyperglycemia by scaling down and up
ICR and CF values by the same fixed constant, respectively.
We name these calculators as HypoCalc and HyperCalc. For
each of the calculators SimCalc, HypoCalc and HyperCalc,
we perform personalization through safe-exploration with
margins of ˘ 60% of corresponding formula-based calcula-
tor recommendation by using VCGP-UCB. We report the
corresponding results under the names VCGP-UCB Sim-
Calc, VCGP-UCB HypoCalc and VCGP-UCB HyperCalc.

We train separate VCGP-UCB models for each patient. GPs
are initialized with 2 samples per patient with carbohydrate
intake, fasting BG levels 30 g, 70 g and 100 mg/dL, 150
mg/dL respectively. Bolus doses for these events are given
using SimCalc.



5.2. Results

For each method of treatment, we report postprandial BG
distribution of all patients in Figure 2, and the average
glycemic metrics of all patients in Table 3. The results indi-
cate that VCGP-UCB sufficiently compensates for miscali-
brations in calculators as it shifts the mean BG towards the
target value even when the baseline calculators are function-
ing inefficiently. VCGP-UCB fine-tunes glycemic control
by exploring around the doses recommended by calculators.
Also, it is safer than CGP-UCB as it has lower LBGI and
HBGI values. This results from restricting dose exploration
around baseline calculators.

Regret of VCGP-UCB with respect to the best available
treatment over time given in Section 2 is shown in Figure
3. This regret is computed by averaging over all patients.
VCGP-UCB achieves smaller regret compared to CGP-UCB
since its exploration is restricted to set of admissible doses
around the formula-based calculator.

In addition, we define the regret with respect to BG target as

RgT “
T
ÿ

t“1

|gtarget ´ Ergt|st, zts|,

where gtarget “ 112.5 mg/dL. Figure 4 shows how RgT
averaged over all patients evolves over time. RgT increases
faster for VCGP-UCB with SimCalc and HyperCalc be-
cause the safe exploration margins are not wide enough to
include optimal insulin dose for some patients and contexts.
Note that these calculators are more skewed towards the
hyperglycemia region.

In Table 3, we also investigate the affect of BG measure-
ment noise on performance of VCGP-UCB when used with
SimCalc. Results show that BG noise up to 20 standard devi-
ation is well tolerated by VCGP-UCB. In addition, we also
study how the change of safety margin affects the perfor-
mance of VCGP-UCB when used with SimCalc. Expanding
the margin from 60% to 80% results in a slight increase in
risk indices.

5.3. Limitations and Future Research Directions

While experimental results demonstrate the effectiveness of
the proposed approach in BG regulation, the current model
and algorithm have certain limitations. Next, we discuss
these and potential remedies.

Safety. Safety of VCGP-UCB depends on the reliability
of baselines around which exploration is performed. Ex-
ploration helps improving performance when clinically ac-
cepted baselines are inaccurate or miscalibrated up to a
certain degree. However, utmost care should be taken when
choosing the baselines, as faulty baselines can result in
unsafe recommendations.

Model mismatch. In real-world, BG measurements are
recorded by BG sensors. Device specific measurement noise
can disturb the accuracy of the GP-based model. In particu-
lar, noise on the BG measurement will propagate through
Eq. 2, resulting in non-Gaussian noise on rewards. This
contamination will create model mismatch and can reduce
the effectiveness of VCGP-UCB especially when BG mea-
surement noise has high variance. Nevertheless, for most of
the commercially available BG meters (fingerstick testing)
measurement errors are small enough to meet International
Organization for Standardization (ISO) criteria (Bergenstal,
2008).

There are two possible solutions to mitigate model mismatch.
One can use Warped GPs (Snelson et al., 2004; Lázaro-
Gredilla, 2012) to find a nonlinear transformation of the
reward data, which can be accurately modeled using GPs.
Alternatively, one can assume that BG measurement error is
Gaussian and use a GP to model BG surface. This GP can
be used to construct confidence intervals of BG values given
treatment and context. Optimistic reward of each admissible
treatment can be found by minimizing losspg̃q over the
confidence interval of BG values. Then, the treatment that
minimizes the optimistic loss can be recommended.

Other sources of errors that require further investigation
include errors made by the patient in reporting the correct
value of carbohydrate intake (context) and insulin dosage
(arm).

6. CONCLUSION
We adapted Contextual Gaussian Process Upper Confidence
Bound algorithm to the volatile bandit setup, and proposed
volatile CGP-UCB. We showed how volatile CGP-UCB can
be used to optimize treatment regimes under time-varying

constraints. Volatile CGP-UCB achieves Õp
b

TγvolT q re-
gret, and enables safe exploration around a formula-based
treatment strategy. This demonstrates the applicability of
bandit algorithms in fine-tuning treatment decisions around
interpretable baseline treatment strategies employed in clini-
cal practice. We used our algorithm as a closed-loop system
for BG regulation in type 1 diabetes mellitus patients. Sim-
ulation results show that our algorithm has the potential to
improve BG regulation compared to formula-based meth-
ods.
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